Let $$\vec{b}=4\vec{i}-\vec{j}-8\vec{k}$$ and $\vec{c}=-\vec{j}-2\vec{k}$. SCORE: Let L be the point (-3, -5, 2). Write $3\vec{c} - 2\vec{b}$ in component form. [a] Write $$3\bar{c}-2b$$ in component form. $3\langle 0,-1,-2\rangle - 2\langle 4,-1,-8\rangle = \langle 0,-3,-6\rangle - \langle 8,-2,-16\rangle$ $=\langle -8,-1,10\rangle$ Find a vector of magnitude 2 in the same direction as \vec{b} . [b] Find a unit vector perpendicular to both \vec{b} and \vec{c} . [c] $$5 \times 7 = \langle 4, -1, -8 \rangle \times \langle 0, -1, -2 \rangle$$ $$= \langle 2 - 8, 0 - 8, -4 - 0 \rangle$$ $$= \langle -6, 8, -4 \rangle$$ Find the equation of the plane parallel to both \vec{b} and \vec{c} , and passing through point L. [d] Write your final answer in general form Ax + By + Cz + D = 0. $$-6(x+3)+8(y+5)-4(z-2)=0$$ or $3(x+3)-4(y+5)+2(z-2)=0$ $$3x-4y+2z-15=0$$ Let ℓ_1 be the line with parametric equation x = 6 - 4t, y = t + 9, z = 2t - 7. [e] Find the symmetric equation of the line parallel to ℓ_1 and passing through L. Let R be the point such that $PR = \langle 3, 2, 1 \rangle$. [a] Find the co-ordinates of R. $$(-3+3,-1+2,5+1)=(0,1,6)$$ In the triangle $\triangle PQR$, find the measure of angle $\angle RPQ$. [b] The triangle $$\triangle PQR$$, find the measure of angle $\angle RPQ$. $$PQ = \langle -7 - 3, 1 - 1, -1 - 5 \rangle = \langle -4, 2, -6 \rangle PQ$$ $$COS^{-1} | PQ | | PR | = COS^{-1} | -12 + 4 - 6 | = COS^{-1} | -\frac{14}{2(14)} = COS^{-1} - \frac{1}{2}$$ $$= \frac{2\pi}{3}$$ Write PR as the sum of two orthogonal vectors, one of which is the projection of PR onto PQ. [c] $$\frac{PQ \cdot PR}{PQ \cdot PQ} PQ = \frac{-14}{56} \left(-4, 2, -6\right) = -\frac{1}{4} \left(-4, 2, -6\right) = \left(1, -\frac{1}{2}, \frac{3}{2}\right)$$ $$\left(3, 2, 1\right) = \left(1, -\frac{1}{2}, \frac{3}{2}\right) + \left(2, \frac{5}{2}, -\frac{1}{2}\right)$$ [d] Find the area of the triangle ΔPQR . $$PQ \times PR = \langle -4, 2, -6 \rangle \times \langle 3, 2, 1 \rangle$$ = $\langle 2 - 12, -(-4 - 18), -8 - 6 \rangle$ = $\langle 14, -14, -14 \rangle$ $\frac{1}{2} || PQ \times PR || = \frac{1}{2} (|4) || \langle 1, -1, -1 \rangle || = 7 \sqrt{3}$ Find the equation of the plane passing through P, Q and R. Write your final answer in general form Ax + By + Cz + D = 0. [e] $$14(x+3)-14(y+1)-14(z-5)=0$$ or $(x+3)-(y+1)-(z-5)=0$ $x-y-z+7=0$ If $$<6$$, a , $-12>$ is parallel to $< b$, -2 , $9>$, find the values of a and b . $$a$$ and b . SCORE: _____/10 PTS $$\langle 6, \alpha, -12 \rangle = k \langle b, -2, 9 \rangle$$ $6 = kb$ $\alpha = -2k$ $-12 = 9k$ $\rightarrow k = -\frac{4}{3}$ $6 = -\frac{4}{5}b$ $\rightarrow b = -\frac{9}{3}$. [a] Find the component form of \vec{r} . [b] Find the direction angle of \vec{s} . [c] If \vec{r} represents a force, and \vec{s} is the movement of an object that the force is applied to, find the work done.